Operational efficiency and biological control throughout the value chain Capital markets day | August 2019 ## State of the art operations ensure operational efficiency and sanitary control Genetics Freshwater Seawater Sales & Marketing ## Located in the pristine glacial waters of Chilean Patagonia - 3 freshwater hatcheries for Atlantic salmon egg production and smoltification - 2 freshwater hatcheries for coho/trout smolt production - Geographically diversified portfolio of farming sites with 74 concessions dispersed over regions X and XI - 22 active Atlantic salmon farming sites - 4 coho sites for 2019 stocking plan - 7 trout farming sites owned through joint venture in force 2017-2022 - 3 processing plants for primary and value-added processing #### Genetics and freshwater Biological stability through high-quality breeding # Isolated freshwater operations for Atlantic salmon ensure biological control - 100% self-sufficient production of broodstock, eggs and smolt in own hatcheries and spawning plant - One of Chile's largest RAS facilities, providing annual production of 14 million smolt at 100g - Self-sufficiency and isolation from industry significantly lowers sanitary risks Petrohué Hatchery Ensenada, Los Lagos Region (X), Chile ### The Lochy strain - proprietary, unique and fast-growing - 15-year improvement program focused primarily on growth - GF3* growth coefficient increased 5% per generation - Can grow up to 5.5kg LW in 10-11 months (male population) - Higher harvest weights significantly improve yield - Lochy can only be stocked for August-January harvest due to maturity issues (Q3-Q4 mainly) - Historically complemented with Fanad strain and hybrid (Lochy + Fanad) for Q1-Q2 harvest #### Accumulated GF3* Atlantic salmon, closed cycles January 2018 - July 2019 #### Cumulative mortality (%) Atlantic salmon, closed cycles January 2018 - July 2019 ### Optimizing seawater production through strain selection ### The hybrid strain – taking advantage of the Lochy's growth attributes - Developed by pairing the Lochy and Fanad strains - Stronger growth than traditional Fanad without Lochy's maturity issues - Compliments the Lochy by allowing for Q1-Q2 harvest #### AquaGen strain - Multiplier agreement, with internal egg production - Introducing AquaGen strain with 2022 smolt to complement the Hybrid and benchmark attributes - Maintains isolation and full sanitary control Historical and expected smolt release strain mix (%) ■ Lochy strain ■ Hybrid (Lochy + Fanad strain) ■ Fanad strain ■ AquaGen Strain ## Early gender selection reduces sanitary risk and increases processing yield - Males achieve up to 12% faster growth and 1.1pp higher yield in HOG processing - Females 1.05pp higher yield in value added processing - Sorting by gender lowers risk and improves yield - Higher-risk sites stocked with males only, thus reducing time at sea and sanitary risk exposure - Improves processing yields for both VAP and HOG - In 2019, all sites are stocked with gender differentiation #### VAP yield distribution by gender (%) HOG processing yield distribution by gender (%) ### Persistent focus on improving smolt yield #### Genetics - Optimizing strain mix during grow-out phase - Genomic selection historically based primarily on growth - Ongoing genetic improvement program focused on SRS- and sea lice resistance - Gender selection in freshwater and sorting in grow-out sites #### Post-smolt evaluation - Medium term project (4-6 years) - Looking for land, water rights and environmental authorizations - Targeted stocking-weight: 200-500g - Chief motivation: shorter exposure to seawater risks #### Historical and expected smolt release (million smolt) #### Seawater Safeguarding fish health and ensuring biological control ## Among the lowest-cost producers of salmon in Chile - Prime portfolio of sites - Strong operational and sanitary practices - Good smolt quality - Lower mortality - High yield ## Continuously working to improve operations - Improving efficiency and productivity - Investing in in 40x40 meter cages - Improving economies of scale - New sea lion nets reinforced with iron fibers - Promoting growth and reducing feed conversion ratios - New feeding barges with added capacity and feeding lines - Increased # of feeding days through remote feeding - High-quality cameras to enhance feed monitoring control - High-energy diets increase growth and reduce feed conversion rate - Reduced maturity and increased growth through use of photoperiod ### Operational efficiency impacted by biological issues #### Atlantic salmon ex-cage cost - High Q2 ex-cage cost due to: - 50% of harvest affected by algae blooms, resulting in lost feeding days and low average weight of 3.8kg - 40% of Q2 harvest from sites with low-density stocking - No low-density sites will be harvested in H2 2019 - Good feeding behavior and no algae situations since June 2019 ## Algae blooms and oxygen levels are the main causes of mortality - High mortality from low oxygen levels - Isolated cases of low oxygen in H1 2019 - Lack of cryogenic oxygen supply due to supplier shortage - Isolated cases of algae blooms resulted in feeding limitations and mortalities ## Taking action to fulfill ambitious targets - 10 Cryogenic platforms with supply barges implemented in 2019 to strengthen oxygen supply - 3 new oil-based oxygen systems in place from 2019/2020 - In situ oxygen generation - Upwelling systems will mitigate algae effects - Targeting less than 8% closed cycle mortality rate Oxzo upwelling system ### Focused on reducing the use of antibiotics | Q2 2019 | 2016 | 2017 | 2018 | 2019 | |---------------------------------|------|------|------|------| | FCRb* (live weight) | 1.36 | 1.17 | 1.21 | 1.30 | | Yield
(kg WFE/smolt) | 4.01 | 5.16 | 4.76 | 4.45 | | Average harvest weight (kg WFE) | 4.79 | 5.00 | 4.81 | 4.35 | | Antibiotic usage (g/ton) | 761 | 515 | 515 | 381 | | Antiparasitic usage (g/ton) | 10 | 12 | 13 | 16 | ^{*} FCRb = Feed conversion rate, biological #### Negative aspects of antibiotics usage - Impacts sustainability and environment - Negative market perception #### Salmones Camanchaca targets - 50% reduction of antibiotics by 2025 - Reduce negative US price gap to non-Chilean salmon ## LiVac vaccination has proved an effective measure to reduce mortality and antibiotics #### Grams antibiotics administered per ton #### Total mortality from SRS ### Sea lice control is fundamental to fish farming ## Regulatory efforts to monitor sea lice levels - Aiming to protect wildlife and safeguard fish welfare - Requirement of less than 3 female sea lice per fish - Mandatory harvest of 25-100% at sites with more than 3 CAD situations* ## Industry currently dependent on two medicinal treatments - Lufenuron: Effective protection in seawater during the first 4-5 months - Azamethiphos: losing efficacy, resulting in increased sea lice pressure ## Salmones Camanchaca's medium- and high-risk areas - Areas may be classified as medium- or high-risk due to increased sea lice pressure - As of July 2019, 6/15 active sites (40%) were located in mediumor high-risk areas - 31,000 tons (35% of harvest) projected to be harvested from medium- or high-risk areas from Aug. 2019 - Dec. 2020 ^{*} CAD situations: Instances with more than 3 gravid female sea lice per fish on average ## Strengthening sea lice protection during final seawater phase 17 months 10 months 0 months 5 months # of months in seawater Up to ~5kg+ Up to ~800 g • Up to ~3kg - Current treatment: Lufenuron - Protection: Good - Current treatment: Azamethiphos - Losing efficacy and currently inadequate - New treatment: Alfaflux - To be evaluated. - Expected efficacy in line with Lufenuron - Current treatment: Azamethiphos - Losing efficacy and currently inadequate - New treatment: Hydrogen Peroxide - Starting treatment from October 2019 - Highly efficient - Expected duration ~12 months - New non-pharmacological treatments - Starting pilots in November 2019 Considerable time to evaluate new treatment methods ## Sea lice treatments under review through industry partnerships #### New treatment methods - Mechanical treatments currently under review - Optilicer - SFI Hydrolicer (Faroese) - FLS Delouse - Other measures being introduced - Salmoclinic, 2021 - Freshwater treatments using wellboats, 2020-2021 - tender process starting in H2 2019 #### Industry cooperation - 12 Chilean companies cooperating to test new treatment systems and share results - Advantages of cooperating - Lower fish stress levels - Lower capex, opex and initial risk ## Processing and sales Driving value through cost efficiency and product flexibility ### Extensive and efficient processing capacity ### San José primary processing (Region X) - Processes fish harvested in Region X, uniquely located close to ocean sites - Daily processing capacity of 85,000 salmon - ~30% third-party processing drives expected 2019 unit cost reduction of 25% - Exports whole fresh salmon directly to Brazil, China and Argentina ## Surproceso Primary processing (Region X) - 33.33% ownership interest - 100% ownership of slaughtering cage concession next to plant - Fish harvested in Region XI with daily processing capacity of 115,000 salmon - Third-party processing profits drives expected 2019 unit cost reduction of 76.5% - Geographically well positioned to be the preferred processing plant for region XII ## Tomé value added processing (Region VIII) - Very flexible processing, switching between fillets, portions and other VAP - ~80% of Salmones Camanchaca's harvested volumes runs through Tomé - Proximity to Santiago provides flexibility to ship fresh fish to the United States - Daily processing capacity of 350 tons raw material and expert at transforming nonpremium graded harvest into premium graded products ### Targeting processing cost below US\$ 1/kg WFE #### Atlantic salmon processing cost (US\$/kg WFE) - Q2 2019 cost of US\$ 1.37/kg - Higher share of portions and fillets increased cost/kg by 30 cents y-o-y - Low average weight and reduced scale effect increased cost/kg by 20 cents y-o-y - Expected FY 2019 processing cost below US\$ 1/kg target due to higher volume and increased average weight in H2 2019 ### Ambitious processing efficiency investment program | 2018 Tomé VAP capacity and efficiency | 2019 - H1 2020 San José expansion, cold storage capacity | 2019 - H1 2020 Tomé VAP capacity and efficiency | | |---|--|--|--| | US\$ 8.3 million | US\$ 5.7 million | US\$ 3.0 million | | | Status Completed 2018 Improvements Freezing and filleting capacity (frozen tunnel and Marel filleting lines) Production efficiency, fillet injection. New facilities for direct dispatch | Status 90% completed Improvements Stunner optimization, gutting machine, dynamic weighter, 12 gates grader, and flow ice upgrade Improving fresh whole lines cold storage, packaging lines, quality calibration and HOG grader Improved truck access and charging station | Status 40% completed Improvements Fresh fillet grader and portions grader Infeeds & weight checkers (giveaway reduction) Connections, conveyors, packaging and labelling stations | | | Benefits Enhanced yield optimization and product quality Increased labor efficiency Cold storage rental savings Potential annual EBIT effect: US\$ 5.1 million | Benefits Increased staff productivity Improved plant efficiency and capacity Potential annual EBIT effect: US\$ 1.1 million | Benefits Filleting capacity: +60% Portions capacity: +80% Increased staff productivity Potential annual EBIT effect: US\$ 2.1 million | | #### High flexibility in market and product allocation % based on US\$ sales #### Sales distribution by market #### Sales distribution by product ### Processing flexibility enables high-value sales #### Salmones Camanchaca vs US Benchmark Avg Salmonex, Urner Barry, Jan 2016 = Base 100 Other species initiative ## Targeting 12,000-17,000 tons other species production by 2023 STAGE 1 STAGE 2 Salmones Expiry of trout JV Trout joint venture (JV) Camanchaca starts Annual production agreement with 1/3 coho production at 4 SC retains concession of trout or coho ownership stake in sites in region X and XI ownership and can use expected to reach ~12,000 tons annual sites for either trout or 12,000-17,000 tons production capacity Expected 2019 harvest coho production with of 4,500 tons 100% ownership 2018 2023 2014 2022 ### Coho has attractive qualities and strong growth potential #### Advantages - Well adapted to local sanitary conditions - Low SRS prevalence - Low antibiotic usage - Completely immune to sea lice - Short production cycles of 8-9 months - Strong volume growth potential ### Coho situation at active sites Aug. 2019 | # of coho in the sea | 1.4 million | |-----------------------|-------------| | Average weight | 1.9 kg | | Accum. mortality rate | 2% | | Feed conversion ratio | 1.14 | | Antibiotic treatments | 0 | | Sea lice treatments | 0 | #### Limitations - Harvest seasonality due to maturity - Lower average weight - Requires pre-rigor processing - Market dependence - 80% of Chilean coho sold to Japan ## Japan is currently the main market for coho 2019 coho sales and product distribution forecast #### Other species initiative infrastructure investment needs | Year | Investment area | | Estimated amount | |-----------|-----------------|---|------------------| | 2021 | Freshwater* | Egg-supplySmolt production | US\$ 20 million* | | 2022 | Seawater* | Site infrastructure | US\$ 30 million* | | 2022-2023 | Processing | Pre-rigor filletingHG continuous frozen-tunnel | US\$ 10 million | | 2023 | Seawater | Working capital | US\$ 30 million | | 2021-2023 | Total | | US\$ 90 million | ^{*}Amounts will vary depending on the mix between own infrastructure and third-party services Salmones Camanchaca will also invest continuously in activities related to market development, such as product development and targeted marketing efforts. ## Operational efficiency and biological control throughout the value chain - Fully integrated operations, isolation and geographical dispersion ensure biological and sanitary control - Freshwater production optimized through high-quality smolt: Lochy strain, genetic program, hybrid and AquaGen initiatives and gender selection - Seawater investments in productivity and initiatives to promote growth and reduce antibiotics - Investments and improvements implemented to address biological challenges - Significant processing investment program to secure high level of productivity and market flexibility - Growth initiative within other salmonid species, trout and coho, targeting 12,000-17,000 tons in 2023. Total production goal is 75,000-80,000 tons in 2023